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Abstract
Hyperlipidemia impacts millions of people globally and has been the major risk factor for developing atherosclerosis and 
cardiovascular disease. Interestingly, hyperlipidemic subjects exhibit increased incidence of rotator cuff tendon injury (RCTI) 
and disorganization of tendon matrix. Low-density lipoproteins (LDL) and its oxidized form (ox-LDL) play a crucial role 
in hyperlipidemia-driven pro-inflammatory responses in multiple tissues including the tendon. The signaling of oxLDL 
upregulates the inflammatory cytokines, chemokines, adhesion molecules, and the activation of monocytes/macrophages/
resident tendon cells and matrix metalloproteinases impairing the tendon homeostasis resulting in the alteration of extracel-
lular matrix. In addition, the hyperlipidemia-driven immune response and subsequent oxidative stress promote degenerative 
responses in the tendon tissue. However, the pathological mechanisms underlying the occurrence of RCTI in hyperlipidemia 
and the effect of ox-LDL in tendon matrix are currently unknown. The present review focuses on the implications and per-
spectives of LDL/oxLDL on the increased incidence of RCTI.
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Introduction

Hyperlipidemia is a chronic condition that describes vari-
ous genetics and acquired disorders leading to elevated lipid 
levels in the body. Hyperlipidemia results in the increased 
risk of cardiovascular disease (CVD) as evident from the 
increased incidence at an early age (Balakumar 2016; Karr 
2017). The advancements in medical sciences have benefit-
ted the better management of hyperlipidemia and associated 
diseases. Moreover, the association of hyperlipidemia with 
musculoskeletal and tendon pathology has been documented 
(Yang et al. 2019). A seminal study reported that the patients 
with tendinopathy displayed increased level of circulatory 
cholesterol, LDL, and triglyceride with a concomitant reduc-
tion in HDL level suggesting the relationship between the 
two pathologies (Tilley et al. 2015); however, the underlying 
molecular mechanisms are obscure. Additionally, significant 
impairments in tendon integrity, structure, and biochemical 
makeup have been observed in patients with hyperlipidemia 

suggesting the increased prevalence of tendon injury or rup-
ture (Soslowsky and Fryhofer 2016). Despite the clinical 
information, the pathological relationship between hyper-
lipidemia and tendon injuries is poorly understood at the 
molecular level. On this juncture, this review focuses on the 
cellular and biochemical mediators involved in the comor-
bidity of hyperlipidemia and rotator cuff tendon injury 
(RCTI) with an emphasis on LDL signaling.

Rotator cuff tendon injury (RCTI)

RCTI refers to musculoskeletal injuries relating to the coex-
istence of degeneration and inflammation in the rotator cuff 
(RC) tendon. Clinically, RCTI is presented as pain, inflam-
mation, and inability of the shoulder to perform various 
ranges of motion especially elevation and external rotation 
(Lewis et al. 2015). Hence, RCTI has been the major mus-
culoskeletal complaint in both clinical and sports medicine 
(Cools et al. 2015). Additional contributing factors, includ-
ing smoking, age, and genetics, have been associated with 
the incidence of RCTI (Lädermann et al. 2015), (Li and 
Hua 2016). Biochemically, the RC tendons are composed 
of mostly water and collagen molecules embedded in the 
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extracellular matrix (ECM) (Woo et al. 2008). In the ECM 
of RC tendon, the collagen is assembled into a hierarchical 
structure starting with fibrils that form fibers that associate 
with fascicles, and the bundles of fascicles constitute the 
fascicular matrix (Thorpe et al. 2015). Despite multiple cell 
types in the tendon tissues, the majority of the tendon is 
constituted of tenocytes, tenoblasts, and tendon stem/stro-
mal cells (TSCs) (Kannus 2000). Roughly, 95% of the dry 
matter in the tendon tissue is type I collagen with varying 
amounts of collagen types III, V, XI, XII, and XIV (Table 1) 
(Screen et al. 2015; Thorpe et al. 2013). The type I collagen 
(Col-I) fibrils display stiff structures that provide mechani-
cal durability and strength to the tendon tissue (Thankam 
et al. 2018a). Additionally, type II collagen (Col-II) only 
exists in small quantities which is typically concentrated 
near the tendon-bone insertion points (Kumagai et al. 1994). 
Moreover, the type III collagen (Col-III) fibrils are crucial 
in healing process and are upregulated following tendon 
injury. Hence, the presence of Col-III indicates an abnor-
mal/healing response, resulting in elastic, loosely organized 
tissue (Maffulli et al. 2000). Importantly, the increased ratio 
of Col-III/Col-I in the tendon reflects degenerated tendon 
contributing to decreased mechanical resistance in RCTI 
(D'hondt et al. 2018).

Hyperlipidemia

Hyperlipidemia, obesity, and higher BMIs have been 
associated with disorganized collagen fibrils in the ten-
don tissue (Taş et al. 2017). The increased density of adi-
pocytes in hyperlipidemia results in the increased pool 
of proinflammatory signals, hormones, and pathological 
mediators which influence multiple organs including the 
RC tendon (Bray et al. 2017). A seminal study involving 
49,914 subjects reported the strong association of hyper-
lipidemia/obesity and the incidence, progression, and 
complications of RCTI compared to the control subjects 
(Macchi et al. 2020). Another study highlights that the 
patients with BMI > 75 reflected morphologically differ-
ent tendon patterns of ECM organization compared to 
the subjects with lower BMI (Steinberg et al. 2020). In a 
recent study, it was demonstrated in a cohort of 5856 indi-
viduals that hypercholesterolemia (defined as total cho-
lesterol greater than 5 mmol/L) increased risk of tendon 
injury in the upper extremities by 1.5-fold, and metabolic 
syndrome increased by 2.5-fold (Skovgaard et al. 2021). 
Moreover, influence of the changes in life style following 
the hyperlipidemic burden and subsequent statin therapy 
on tendon homeostasis is largely unknown warranting 
further research.
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Low density lipoprotein

LDL is a complex lipoprotein containing various lipid spe-
cies including triglycerides, phospholipids, and free/esteri-
fied cholesterol (Khosravi et al. 2018). Elevated levels of 
these plasma lipoproteins have been correlated with higher 
incidence of RCTI (Bolam et al. 2021; Longo et al. 2010). 
There are multiple pathways that promote the formation of 
oxidized LDL (oxLDL) which leads to increased levels of 
inflammatory cytokines, chemokines and adhesion mol-
ecules, activation of monocytes/macrophages and matrix 
metalloproteinase (MMPs), and upregulation of scavenger 
receptors (Steinberg 2009). Importantly, the subendothelial 
retention of native LDL and oxLDL triggers the infiltration 
and activation of inflammatory resulting in foam cell forma-
tion and the progression of atherosclerotic lesions (Ishigaki 
et al. 2009).

LDL particles circulate in the blood before binding to 
cell surface LDL receptors (LDL-R) which in turn mediate 

the cellular uptake of lipid components (Fig. 1) (Herz et al. 
2000). The molecular events involve the binding of LDL 
particle on the plasma membrane, followed by internaliza-
tion, and routing to the lysosome for degradation through a 
process called receptor-mediated endocytosis. Other family 
members in this receptor class include LDL-R, LDL recep-
tor-related protein (LRP), megalin, very low-density lipopro-
tein receptors (VLDL-R), and ApoE receptor 2 (apoER2). 
The binding of structurally dissimilar ligands to these recep-
tors results in the internalization in similar pathway (May 
et al. 2007). These receptors require  Ca2+ for ligand binding.

The LDL-R is a cell surface glycoprotein comprised of 839 
amino acids (Yamamoto et al. 1984) which is synthesized as 
an immature protein, processed in the Golgi apparatus, before 
turning into a mature form that is transported to the cell sur-
face. LDL-R has an N-terminal ligand-binding domain con-
sisting of seven cysteine rich complement type repeats. Addi-
tionally, it also contains 3 EGF precursor homology domains 
and one O-linked glycosylated domain (Hussain 2001). The 

Fig. 1  LDL molecular formation pathway from precursor lipid spe-
cies. The molecular events involve binding of LDL particle on the 
plasma membrane, followed by internalization, and routing to the lys-

osome for degradation into fatty acids. However, an overabundance 
of LDL leads to atherogenesis through the formation of foam cells, 
lipid-laden macrophages, that localize on blood vessel walls
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entire receptor is rich in hydrophobic amino acid residues that 
promote membrane anchoring of cholesterol, while cytoplas-
mic membrane FDNPXY sequence is necessary for targeting 
of receptors. Studies have shown that the various repeats of 
negatively charged domains are necessary for a high bind-
ing affinity of cholesterol molecules; however, there is cer-
tain specificity that precludes all negatively (Goldstein et al. 
1979). Specifically, the receptor binds apolipoprotein B (apoB) 
in LDL particles before being internalized by endocytosis 
via clathrin-coated pits involving the LDL receptor adaptor 
protein 1 (LDLRAP1) (Sniderman et al. 2010). After being 
endocytosed, the LDL molecule is degraded in an acidic lyso-
somal compartment and the cell receives LDL-derived choles-
terol. This type of cholesterol further blocks sterol regulated 
membrane-bound transcription factors called sterol regulatory 
element-binding proteins (SREBPs). In cholesterol-depleted 
cells, SREBPs are normally synthesized in the endoplasmic 
reticulum, transported to the Golgi apparatus for processing, 
which activates the transcription of genes encoding HMG-CoA 
reductase (HMGCR) and the other enzymes of cholesterol 
biosynthesis and LDL receptor (Goldstein and Brown 2009). 
However, LDL-derived cholesterol blocks the transport to the 
Golgi, preventing the activation of HMGCR, to downregulate 
cholesterol synthesis, preventing cholesterol overload.

Low intracellular cholesterol levels trigger the activa-
tion of SREBPS to increase transcriptional activation of 
HMGCR (the rate limiting enzyme of cholesterol biosynthe-
sis) and the downstream enzymes of the mevalonate (MVA) 
pathway (Sakakura et al. 2001). However, once the cell 
receives LDL-derived cholesterol, the transcription of the 
HMGCR gene is downregulated through the inactivation of 
the SREBP pathway via a feedback regulation. Additionally, 
the cholesterol content of the cell is regulated by the action 
of esterifying enzyme, acyl CoA:cholesterol acyltransferase 
(ACAT) and facilitating the storage (Kristiana et al. 2008).

The hyperlipidemia induces xanthomas (deposits of cho-
lesterol in peripheral tissues) and accelerated atherosclerosis 
which increases risks of coronary heart disease. Xanthomas 
present as subcutaneous nodules with normal overlying skin 
and commonly occur on tendons, especially Achilles (Yang 
et al. 2019), tendon attachments, ligaments, fascia, and peri-
osteum (Bell and Shreenath 2020). Mostly, the xanthomas 
appear in yellow color due to the presence of carotene found 
in lipids (Al Jasmi et al. 2019). Xanthomas cause pain, espe-
cially if localized on larger tendons, and lead to tendon rup-
ture and weakness. Xanthomas bear cholesterol-rich mate-
rials and foams cells resulting from hyperlipidemia (Bath 
et al. 2010). There are rare cases of rotator cuff xanthomas 
reported; however, most of the pathology is found on the 
Achilles tendon. Hyperlipidemia normally leads to rotator 
cuff tears rather than xanthomas.

Native lipids (lipoproteins) do not induce foam cell 
formation; instead, the factors including the pathogenic 

modification of high local concentrations of lipids in con-
nective tissue, the presence of qualitatively different lipo-
proteins at normal plasma lipid concentration, and increased 
extravasation of lipids, as well as dysfunction of the reverse 
cholesterol transport, are the key triggers (Zak et al. 2014). 
Typically, free cholesterol inhibits its de novo synthesis and 
the synthesis of LDL receptors. However, when phagocytic 
cells depend on the scavenger receptors [SR-A, SR-B1, 
CD36, lectin-like oxidized LDL receptor-1 (LOX-1)] for 
the uptake of oxidatively modified LDL particles, OxLDL 
(PrabhuDas et al. 2017). Interestingly, the oxLDL particles 
fail to activate the feedback receptors leading to a hyper-
cholesterol environment, mediating the formation of xan-
thomas. Importantly, a positive relationship between the 
size of Achilles tendon xanthomas with titers of antibod-
ies against OxLDL has been identified (Tsouli et al. 2005). 
Additionally, the decreased HDL concentration and disor-
ders in the reverse cholesterol transport triggered the Achil-
les xanthomas despite normolipidemic subjects (Matsuura 
et al. 2005). Higher amounts of serum LDL have also been 
suggested to be responsible for the thickness of Achilles 
tendon, as well as RC tendinopathy, affecting the mechanical 
properties of the tendon and leading to higher rates of tendon 
injury (Scheel et al. 2004).

OxLDL

LDL undergoes biochemical modifications especially oxida-
tion in the sub-endothelial space of the vascular wall. Oxi-
dation of LDL is catalyzed by multiple reactions including 
a lipoxygenase reaction (Kühn et al. 1994; Sigal et al. 1994), 
metal mediated oxidation (Ehrenwald et al. 1994; Lynch and 
Frei 1993; Sakurai et al. 1991; Sniderman et al. 2010), and 
peroxidase catalyzed reactions (Napoli et al. 1991). LDL oxi-
dation is a complex process where both the apolipoprotein 
B100 and lipids present in LDL are modified. Reactive oxy-
gen species (ROS) induce fragmentation of apoB, producing 
peptides of varying sizes from 14 to 500 kDa as well as protein 
carbonyls (Matsuura et al. 2008). Additionally, lipids and fatty 
acids such as cholesteryl esters, phospholipids, and triglyc-
erides present in LDL are susceptible to oxidation by ROS 
releasing free and esterified fatty acid peroxides, aldehydes, 
and ketones that are further oxidized to amplify the damage. 
The formation of these products or the changes in the proper-
ties of circulating LDL are not guaranteed during the oxidation 
of LDL as many are secondary products of oxidation and their 
formation largely depends on the type of oxidant, the extent of 
oxidation, and the presence or absence of other agents such as 
redox metals (Parthasarathy et al. 2010).

In blood vessels, oxLDL activates endothelial cells by trig-
gering the expression of adhesion molecules (Obermayer et al. 
2018) which mediate the rolling and adhesion of circulating 
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leukocytes (monocytes and T cells) to the endothelium. Fol-
lowing adhesion, the monocytes migrate into the intimal layer 
in response to chemokines and subsequently differentiate into 
macrophages that upregulate both toll-like receptors (TLRs) 
and scavenger receptors (SRs) (Pirillo et al. 2013). Addition-
ally, stimulation of membrane bound CD36, TLR2, TLR4, and 
TLR6 results in the upregulation of pro-inflammatory media-
tors and initiate immune activation of macrophages and micro-
glia (Chávez-Sánchez et al. 2010; Stewart et al. 2010). As the 
consequence of the macrophage activation, proinflammatory 
cytokines are released, ROS are synthesized, and proteolytic 
enzymes are secreted contributing to the matrix degradation. 
However, activation of TLRs in tendinopathies is still under 
debate. However, TLR expression contributes minimally to 
Achilles tendon degeneration, but triggers degradative tissue 
reactions (de Mos et al. 2009). In contrast, our group reported 
that under an oxidative environment (oxidative stress) there is 
increased level of the major damage associated molecular pat-
terns (DAMPS), high mobility group box (HMGB1), which in 
turn maintains RAGE, TLR4, and TLR2 in an activated state 
(Thankam et al. 2018b). In patients with RCTI and glenoid 
arthritis, HMGB1 was significantly upregulated contribut-
ing to the pro-inflammatory responses aggravating the injury. 
Additionally, the increased levels of HMGB1 and RAGE in 
patients with superior labral anterior to posterior (SLAP) tears 
are most likely due to the ischemia/necrosis-mediated sterile 

inflammation associated with the injury (Thankam et al. 2016). 
Interestingly, these DAMP mediators have been upregulated 
in the tendon tissues of RCTI rat model which were progres-
sively downregulated during the course of healing (Thankam 
et al. 2018b).

Importantly, oxLDL has been identified as a ligand for 
receptors for advanced glycation end products (RAGE) in 
hyperlipidemic conditions (Sun et al. 2009). RAGE acceler-
ates the lipid deposition and foam cell formation in smooth 
muscle cells by increasing the uptake of oxLDL, and the 
production of ROS with subsequent activation of NF-kB. 
NF-kB upregulates a battery of inflammatory mediators 
leading to chronic inflammatory state (Farmer and Kennedy 
2009). Logically, this inflammatory pathway could be the 
link to explain tendinopathies caused by these molecules. 
Evidently, harvested human bicep tendons displayed signifi-
cantly increased expression of HMGB1, RAGE, and angio-
genesis in RCTI patients (Thankam et al. 2016). It has been 
hypothesized that these molecules contribute to increased 
cell migration and angiogenesis, resulting in the recruitment 
of additional inflammatory cells and release of mediators 
promoting ECM disorganization and eventual tendinosis 
(Fig. 2).

Additionally, oxLDL stimulates the polarization of mac-
rophages to M2 phenotype, leading to increased IL-10 and 
transforming growth factor beta (TGF-β) (Rios et al. 2013). 

Fig. 2  (Left panel) Oxidative molecules and free radicals lead to OxLDL formation. OxLDL increases inflammatory cytokines and polarizes 
macrophages to M2 phenotype. (Right panel) Downstream signaling of OxLDL and M2 leading to collagen disruption and angiogenesis
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TGF-β precipitates fibrotic disorders leading to tendon 
injuries and stimulates the migration and proliferation of 
fibroblasts and ECM synthesis (Stone et al. 2016). Chronic 
elevation of TGF-β induces definitive changes in tendon 
ECM and tendon fibroblasts contributing to altered cellular 
responses to healing. However, TGF-β1 expression is known 
to be variable in diseased human tendons, depending on the 
anatomy of the tendon and its disease stage (tendinopathy or 
tear) (Fenwick et al. 2001; Goodier et al. 2016). Overall, the 
oxLDL causes significant pathophysiological tendon altera-
tions, leading to a degradative phenotype.

Cholesterol in RCTI

Information from the animal models have suggested that higher 
serum concentrations of cholesterol favor the greater incidence 
of tendon pathology. High cholesterol-driven apoptosis and 
autophagy of Achilles tendon derived stem cells (TDSCs) 
through reactive oxygen species (ROS)-activated AKT/FOXO1 
signaling have been reported suggesting the degenerative 
changes (Li et al. 2020) (Fig. 3). Moreover, cholesterol inhibits 
the proliferation and migration of tendon derived stem cells 
(TDSC) and induces cell cycle arrest. In a seminal study, the 
exposure of tendons to differing levels of cholesterol for varying 
amounts of time reduced the expression of Ki76, a proliferation 

marker, confirming an increase in cell cycle arrest (Beason 
et al. 2014) as evident from an increased proportion of G0/
G1 phase cells and fewer G2/M and S phase cells. In addition, 
the increased cholesterol level significantly downregulated the 
expression of tendon cell markers with a simultaneous increase 
in ROS signaling via NF‐κB mediated pathway. As a result, 
significant histological alteration was evident in the experimen-
tal models with hypercholesterolemia (Li et al. 2019). Over-
all, high cholesterol inhibits tendon-related gene expression in 
TDSCs implying that pathogenesis in tendon injury is related 
to the alterations in tendon specific gene expression.

Apolipoprotein E (ApoE), the component of HDL, has 
been associated with its effects of alleviating pre-existing ath-
erosclerotic lesions (Tangirala et al. 1999) as well as reducing 
LDL levels by promoting LDLR-dependent hepatic clearance 
of triglyceride-rich lipoproteins from the circulation (Rosen-
feld et al. 1993). Interestingly, ApoE has been hypothesized 
to be protective for tendon function; however, the underlying 
mechanism is unknown. A recent study using ApoE knock-
out mice model reported that the consumption of a high-fat 
diet led to marked increase in oxLDL deposition in the load-
bearing ECM of the tendon where the effect was aggravated 
in ApoE knockout group. Additionally, the lack of ApoE 
resulted in the increased pool of oxLDL and subsequent 
upregulation of matrix metalloproteinase 2 (MMP2) (Grewal 
et al. 2014). Similarly, another study reported an increase in 

Fig. 3  The intracellular macrophage activation leading to the increased production of proinflammatory cytokines and ROS. Cholesterol reacts 
with ROS to activate AKT/FOXO1 signaling leading to the histological alterations including degenerative damage in the tendon
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the tendon stiffness and modulus in the supraspinatus tendons 
of hypercholesterolemic, ApoE knock-out mice, compared to 
control mice (Beason et al. 2011). Interestingly, a handful of 
reports concluded the impact of hypercholesterolemia in the 
pathogenesis of tendon injury. A summary of these studies 
is displayed in Table 2.

Abboud et al. (Abboud and Kim 2010) discovered that total 
cholesterol, triglycerides, and LDL-C levels were higher in 
patients with RCTI where HDL-C levels were lower than the 
control. In contrast, another study reported no significant dif-
ference between serum triglycerides and total serum choles-
terol in RCTI (Longo et al. 2010). Also, a retrospective study 
found that patients prescribed for Achilles’ tendon repair sur-
gery displayed increased levels of total cholesterol, LDL-C, 
and triglycerides with significant lipid deposits in tendon tis-
sue compared to that of the healthy people (Wang et al. 2018). 
In addition, total cholesterol and LDL-C levels were signifi-
cantly higher, while HDL-C levels were lower in patients with 
Achilles’ tendon repair than compared to controls (Ozgurtas 
et al. 2003). In a cross-sectional case-controlled study, patients 
with hyperlipidemia displayed significantly higher shear wave 
velocities in the patellar tendon indicating that the high lev-
els of LDL impaired the biomechanical properties (Torgutalp 
et al. 2020). Interestingly, the LDL level had a direct impact 
on patellar tendon stiffness independently of body mass index. 
Similarly, hyperlipidemia and cholesterol accumulation were 
the major contributing factors to Achilles’ tendon injury in 
patients with familial hypercholesterolemia and tendinous 
xanthomas (Squier et al. 2021).

Importantly, the xanthoma formation has been associated 
with higher intracellular lipid content and higher inflamma-
tory responses of macrophages to oxLDL. Therefore, xan-
thoma formation aggravates the risk of tendon inflammation 
due to abnormal inflammatory response and formation of 
macrophages (Artieda et al. 2005). Antibodies against oxLDL 
have been correlated with Achilles’ tendon thickness, and the 
patients demonstrated abnormal Achilles’ tendon echo struc-
ture with higher levels of oxLDL suggesting that immune 
cells from patients with familial hypercholesterolemia have 
increased predisposition to forming foam cells in the presence 
of oxLDL (Tsouli et al. 2006). In addition, there is significant 
association between moderate and high perioperative total 
cholesterol and LDL levels and the rates of repeat surgery 
after primary arthroscopic rotator cuff repair (Cancienne et al. 
2017; Werner et al. 2017). This suggests that these elevated 
lipids also lead to rotator cuff pathological changes; however, 
further research is needed in this area. Overarchingly, the LDL 
levels correlate with the levels of oxLDL which eventually 
turn into tendinous xanthomas altering gross structure of the 
tendons. The intimate relationship between LDL and oxLDL 
and xanthomas cause tendons to increase in thickness and the 
thickness of the tendon returns closer to baseline following 
lowered levels of LDL (indirectly oxLDL) (Tsouli et al. 2005).

In the ApoE knockout mice group with the setting of a 
high fat diet, there was a significant increase in oxLDL lev-
els in the load bearing parts of the tendon ECM. The ApoE 
knockout mice exhibited drastic decrease in tendon function 
and downregulation of Col IA1 genes compared to controls 
with increased MMP2 (Grewal et al. 2014).

Summary

Hyperlipidemia significantly alters the pathophysiology of 
tendon tissues; however, the exact underlying mechanisms 
are unclear. This critical review provides insights into poten-
tial link between the increased concentration of LDL and 
oxLDL in the bloodstream and tendon injury with an empha-
sis on RCTI. OxLDL signaling upregulates the inflammatory 
cytokines, chemokines, and adhesion molecules as well as 
activation of monocytes/macrophages and MMPs impairing 
the tendon homeostasis resulting in the alteration of ECM. 
In addition, the activated macrophages upregulate both 
toll-like receptors (TLRs) and scavenger receptors (SRs) 
leading to ROS generation and thus promoting degenera-
tive responses. Furthermore, the upregulation of DAMPs 
including HMGB1 in hyperlipidemia and the downstream 
signaling enhances the overall pool of pro-inflammatory 
signals facilitating the aggravated co-morbidity of RCTI. 
Additionally, RAGE accelerates the lipid deposition and 
foam cell formation by increasing the uptake of oxLDL 
and the production of ROS with subsequent activation of 
NK-kB. NK-kB upregulates inflammatory mediators leading 
to chronic inflammatory state, leading to increased incidence 
of tendinopathies especially RCTI. Also, oxLDL stimulates 
the polarization of macrophages to M2 phenotype, leading 
to increased expression of IL-10 and TGF-β resulting in 
fibrotic disorders in the tendon. Overall, the hyperlipidemia 
affects almost every part of the body including the tendons; 
however, the information regarding the underlying molecular 
pathology is limited warranting further research. Moreover, 
the elucidation of the underlying molecular mechanisms and 
the targets to intervene could open multiple translational 
opportunities for the development of novel therapeutic strat-
egies in the management of RCTI.
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